Triplet Merge Trees

نویسندگان

  • Dmitriy Smirnov
  • Dmitriy Morozov
چکیده

Merge trees are fundamental data structures in computational topology. They track connected components in sublevel sets of scalar functions and can be used to compute 0-dimensional persistence diagrams, to construct contour trees on simply connected domains, and to quickly query the relationship between connected components in different sublevel sets. We introduce a representation of merge trees that tracks the nesting of their branches. We present algorithms to construct and manipulate the trees in this representation directly. We show that our algorithms are not only fast, outperforming Kruskal’s algorithm, but they are easy to parallelize in shared memory using double-word compare-and-swap operations. We present experiments that illustrate the scaling of our algorithms as functions of the data size and of the number of threads.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient algorithms for computing the triplet and quartet distance between trees of arbitrary degree

The triplet and quartet distances are distance measures to compare two rooted and two unrooted trees, respectively. The leaves of the two trees should have the same set of n labels. The distances are defined by enumerating all subsets of three labels (triplets) and four labels (quartets), respectively, and counting how often the induced topologies in the two input trees are different. In this p...

متن کامل

Interleaving Distance between Merge Trees

Merge trees are topological descriptors of scalar functions. They record how the subsets of the domain where the function value does not exceed a given threshold are connected. We define a distance between merge trees, called an interleaving distance, and prove the stability of these trees, with respect to this distance, to perturbations of the functions that define them. We show that the inter...

متن کامل

Comparing and Aggregating Partially Resolved Trees

We define, analyze, and give efficient algorithms for two kinds of distance measures for rooted and unrooted phylogenies. For rooted trees, our measures are based on the topologies the input trees induce on triplets; that is, on three-element subsets of the set of species. For unrooted trees, the measures are based on quartets (four-element subsets). Triplet and quartet-based distances provide ...

متن کامل

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees

We study the problem of computing the triplet distance between two rooted unordered trees with n labeled leafs. Introduced by Dobson 1975, the triplet distance is the number of leaf triples that induce different topologies in the two trees. The current theoretically best algorithm is an O(n logn) time algorithm by Brodal et al. (SODA 2013). Recently Jansson et al. proposed a new algorithm that,...

متن کامل

A practical O(n log n) time algorithm for computing the triplet distance on binary trees

The triplet distance is a distance measure that compares two rooted trees on the same set of leaves by enumerating all sub-sets of three leaves and counting how often the induced topologies of the tree are equal or different. We present an algorithm that computes the triplet distance between two rooted binary trees in time O ( n log n ) . The algorithm is related to an algorithm for computing t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017